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RESUMO 

O presente trabalho teve como objetivo avaliar o desempenho tribológico do 

aço VF800 reparado pelo processo Gas Metal Arc Welding (GMAW) com o modo 

Cold Metal Transfer (CMT). O estudo buscou verificar a viabilidade da recuperação 

desse material, amplamente utilizado na fabricação de ferramentas de conformação 

a frio. Amostras com dimensões de 20 × 75 × 250 mm foram preparadas, pré-

aquecidas a 450 °C e soldadas utilizando o processo GMAW-CMT. Posteriormente, 

foram realizados ensaios metalográficos, medições de microdureza e ensaios 

tribológicos em tribômetro linear recíproco, em conformidade com a norma ASTM 

G133. Os resultados revelaram alterações microestruturais significativas na zona 

termicamente afetada (ZTA), que apresentou o maior pico de dureza, superior a 900 

HV0,3 em comparação ao metal de solda (600–700 HV0,3) e ao metal de base (400–

500 HV0,3). Nos ensaios tribológicos, o metal de solda apresentou os menores 

coeficientes de atrito e desgaste, enquanto o metal de base mostrou maior 

suscetibilidade à remoção de material. As morfologias das trilhas de desgaste 

indicaram predominância do mecanismo abrasivo, com boa integridade superficial 

das regiões reparadas. A análise do desgaste indicou boa integridade superficial das 

regiões reparadas, evidenciando a viabilidade técnica do processo GMAW-CMT 

para a recuperação do aço VF800 em aplicações industriais que exigem resistência 

ao desgaste e estabilidade dimensional. 

Palavras-chave: Aço VF800. Reparo. Processo GMAW-CMT. Dureza. 

Coeficiente de atrito. Desgaste.  
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1 INTRODUÇÃO 

A crescente demanda por eficiência produtiva e redução de custos na 

indústria metalmecânica tem impulsionado o desenvolvimento de aços ferramenta 

de alto desempenho, capazes de suportar altas tensões mecânicas e condições 

severas de desgaste. Entre esses materiais, destaca-se o aço VF800, amplamente 

empregado na fabricação e recuperação de ferramentas utilizadas em processos de 

conformação a frio, devido à sua elevada dureza, boa tenacidade e resistência ao 

desgaste, características resultantes de sua microestrutura martensítica com 

carbonetos primários e secundários (Pellin; Israel; Dalcin, 2024). 

Apesar de suas excelentes propriedades, o aço VF800 está sujeito a falhas 

durante o uso, especialmente em regiões de contato submetidas a atrito intenso e 

esforços cíclicos. As falhas mais recorrentes incluem trincas, lascamentos e 

desgaste superficial, que comprometem a integridade da ferramenta, reduzindo 

significativamente sua vida útil e elevando os custos de manutenção (Marques, 

2019; Both, 2011). Tais danos estão associados à concentração de tensões na 

aresta de corte e à degradação progressiva da microestrutura martensítica em 

função das altas temperaturas e pressões envolvidas no processo de trabalho a frio. 

Nesse contexto, os processos de soldagem de reparo surgem como uma alternativa 

viável e economicamente vantajosa para a recuperação de componentes 

danificados, possibilitando a reconstrução de superfícies desgastadas e o 

restabelecimento das propriedades mecânicas originais, prolongando a durabilidade 

das ferramentas e reduzindo a necessidade de substituição completa (Altan; Oh; 

Gegel, 1999). 

Entre os processos de soldagem empregados em reparos industriais, o Gas 

Metal Arc Welding (GMAW) destaca-se por oferecer elevada taxa de deposição, boa 

qualidade do cordão de solda e facilidade de automação, sendo amplamente 

utilizado em aplicações que exigem produtividade e controle dimensional rigoroso. 

Contudo, sua aplicação em aços-ferramenta de alta resistência, como o VF800, 

requer atenção especial aos parâmetros de processo — especialmente o pré-

aquecimento, a temperatura de interpasse e a energia de soldagem — de modo a 

reduzir tensões residuais e evitar a formação de microestruturas frágeis na zona 

termicamente afetada (ZTA), que comprometem o desempenho mecânico e a 

integridade metalúrgica da junta soldada (Pellin; Israel; Dalcin, 2024; Both, 2011; 
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Tobola et al., 2017). O controle preciso do aporte térmico e dos parâmetros de 

soldagem é fundamental para assegurar a integridade metalúrgica do conjunto. A 

manutenção adequada dessas condições permite preservar a dureza e a tenacidade 

do material base, além de garantir uma boa aderência entre o metal de adição e o 

substrato, evitando a formação de zonas fragilizadas e descontinuidades 

indesejadas (Dieter, 1981). 

A avaliação do desempenho tribológico de aços reparados é igualmente 

essencial para validar a eficácia dos procedimentos de soldagem, uma vez que 

propriedades como coeficiente de atrito, taxa de desgaste e microdureza superficial 

estão diretamente relacionadas à integridade metalúrgica da interface e à 

compatibilidade entre o metal de adição e o metal base. Ensaios tribológicos 

padronizados permitem compreender os mecanismos de desgaste predominantes e 

estimar a durabilidade das superfícies em condições reais de serviço, auxiliando na 

previsão da vida útil e na otimização dos processos de reparo (Tobola et al., 2017; 

Both, 2011). Assim, a integração entre a caracterização metalográfica e os testes de 

desgaste fornece subsídios técnicos para aprimorar o desempenho de ferramentas 

de conformação a frio reparadas por GMAW-CMT, aumentando sua confiabilidade e 

reduzindo custos operacionais. 

1.1 TEMA 

Recuperação do aço VF800 com o processo Gas Metal Arc Welding (GMAW) 

com o modo Cold Metal Transfer (CMT). 

1.2 DELIMITAÇÃO DO TEMA 

O presente trabalho delimita-se à investigação do comportamento tribológico 

do aço ferramenta VF800 submetido a reparo pelo processo GMAW-CMT. A 

pesquisa concentra-se na avaliação das alterações microestruturais, de dureza e de 

resistência aos desgastes decorrentes do processo de soldagem, considerando 

condições específicas de pré-aquecimento e parâmetros de soldagem previamente 

definidos por Pellin, Israel e Dalcin (2024). 
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1.3 PROBLEMA DE PESQUISA 

O aço-ferramenta VF800 é amplamente empregado em processos de 

conformação a frio, sendo reconhecido por sua alta dureza, resistência ao desgaste 

e boa tenacidade, propriedades resultantes de sua microestrutura martensítica 

revenida com carbonetos primários e secundários finamente distribuídos (Mesquita; 

Barbosa, 2005; Villares Metals, 2001). Apesar de suas excelentes características, 

esse material está sujeito a danos por trincas, lascamentos e desgaste superficial 

durante o serviço, principalmente em regiões de contato submetidas a elevadas 

tensões e atrito intenso, o que leva à redução da vida útil das ferramentas e ao 

aumento dos custos de manutenção e substituição (Gonçalves, 2016). 

A soldagem de reparo surge como uma alternativa viável para restaurar a 

funcionalidade de componentes desgastados, reduzindo o descarte e o custo de 

produção. Entre os processos disponíveis, o Gas Metal Arc Welding (GMAW-CMT) 

destaca-se pela alta taxa de deposição, versatilidade e qualidade metalúrgica do 

depósito, sendo amplamente utilizado em reparos industriais (Kou, 2003). Contudo, 

a aplicação desse processo em aços-ferramenta de alta liga, como o VF800, requer 

controle rigoroso dos parâmetros de pré-aquecimento, temperatura de interpasse e 

energia de soldagem, para evitar a formação de microestruturas frágeis na Zona 

Termicamente Afetada (ZTA) e preservar o desempenho tribológico do material 

(Tobola et al., 2017; Pellin, 2018). 

Diante desse contexto, surge a seguinte questão de pesquisa: O processo de 

soldagem GMAW-CMT é tecnicamente viável para o reparo do aço ferramenta 

VF800, mantendo ou melhorando seu desempenho tribológico em relação ao 

material original? 

1.4 OBJETIVO 

1.4.1 Objetivo geral 

Investigar a viabilidade da recuperação do aço VF800 por meio do processo 

de soldagem GMAW-CMT, avaliando as alterações microestruturais e as 

propriedades mecânicas resultantes, a fim de verificar sua aplicabilidade em reparos 

industriais. 
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1.4.2 Objetivos específicos 

a) Analisar a microestrutura do aço VF800 reparado por soldagem GMAW-CMT; 

b) Avaliar a dureza do aço reparado, da ZTA e do MS; 

c) Avaliar o comportamento tribológico (coeficiente de atrito e taxa de desgaste). 

1.5 JUSTIFICATIVA 

A crescente busca por eficiência produtiva e redução de custos na indústria 

metalmecânica tem impulsionado o desenvolvimento de estratégias voltadas à 

recuperação e prolongamento da vida útil de ferramentas e componentes de alto 

valor agregado. Nesse contexto, a aplicação de processos de soldagem de reparo 

representa uma alternativa tecnicamente viável e economicamente vantajosa em 

relação à substituição completa de ferramentas danificadas, contribuindo para a 

redução do consumo de matérias-primas e do impacto ambiental associado ao 

descarte de resíduos metálicos (Gonçalves, 2016; Both, 2011). 

O aço ferramenta VF800 destaca-se entre os materiais empregados em 

operações de conformação a frio, devido à sua elevada dureza, resistência ao 

desgaste e boa tenacidade, propriedades resultantes de sua microestrutura 

martensítica revenida, com carbonetos primários e secundários finamente 

distribuídos (Mesquita; Barbosa, 2005; Tobola et al., 2017). Entretanto, as condições 

severas de serviço — que envolvem altas pressões de contato, atrito intenso e 

esforços cíclicos — favorecem o surgimento de trincas, lascamentos e desgaste 

superficial, comprometendo a durabilidade e o desempenho das ferramentas 

(Gonçalves, 2016; Both, 2011). 

Entre as técnicas de recuperação disponíveis, o processo de soldagem 

GMAW (Gas Metal Arc Welding) apresenta alta taxa de deposição, estabilidade do 

arco elétrico e facilidade de automação, sendo amplamente utilizado na manutenção 

e restauração de componentes metálicos. No entanto, sua aplicação em aços de alta 

liga exige controle rigoroso de variáveis operacionais, como pré-aquecimento, 

temperatura de interpasse e energia de soldagem, pois essas influenciam 

diretamente a formação microestrutural, a distribuição de tensões residuais e as 

propriedades tribológicas do material reparado (Kou, 2003; Mesquita; Barbosa, 

2005; Tobola et al., 2017). 
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Dessa forma, a investigação do comportamento tribológico do aço VF800 

após o reparo por GMAW-CMT justifica-se pela necessidade de compreender os 

efeitos metalúrgicos e funcionais do processo, possibilitando a definição de 

parâmetros de soldagem adequados e o aprimoramento das práticas de 

recuperação de ferramentas. Além de sua relevância técnica, o estudo também 

possui importância ambiental e econômica, ao prolongar a vida útil dos componentes 

metálicos e reduzir o consumo de recursos e o descarte industrial (Gonçalves, 2016; 

Both, 2011). 
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2 REVISÃO DA LITERATURA 

A revisão da literatura apresenta um panorama dos aços ferramenta para 

trabalho a frio, abordando os tratamentos térmicos empregados, as técnicas de 

reparo por soldagem e o desempenho de ferramentas recuperadas por esse 

processo. 

2.1 AÇOS PARA FERRAMENTAS DE TRABALHO A FRIO 

As ferramentas utilizadas em processos de trabalho a frio são fabricadas em 

aços especiais, desenvolvidos para oferecer alta dureza, resistência ao desgaste e 

boa tenacidade — propriedades fundamentais para suportar as elevadas cargas de 

contato e atrito presentes na conformação mecânica. Entre os materiais mais 

empregados destacam-se os aços da série AISI, especialmente os tipos D2 e A2, 

amplamente utilizados na fabricação de punções, matrizes e insertos de corte 

(Hillskog, 2015). 

Apesar da excelente resistência ao desgaste, a baixa tenacidade dos aços da 

classe D — em especial do AISI D2 — os torna suscetíveis à formação de trincas 

sob impacto ou carregamentos severos, o que limita seu uso em determinadas 

operações de conformação. Para compreender melhor o comportamento desses 

materiais, é importante conhecer a classificação geral das famílias de aços-

ferramenta, organizada segundo suas características metalúrgicas, meio de têmpera 

e aplicação típica, conforme apresentado na Tabela 1. 

Nesse contexto, o aço VF800AT surgiu como uma alternativa moderna aos 

aços da série D, oferecendo maior tenacidade, resistência ao desgaste e 

estabilidade dimensional. Sua composição química balanceada, com teores 

controlados de C, Cr, Mo, V e Nb, resulta em uma microestrutura martensítica 

refinada, elevada temperabilidade e menor suscetibilidade à formação de trincas 

(Villares Metals, 2001; Mesquita; Barbosa, 2005; Both, 2011). 
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Tabela 1 – Famílias de aços ferramenta 

Grupo Característica Aplicação 

W Temperáveis em água (water quench) Trabalho a frio 

L Baixa liga para aplicações especiais (low 
alloy) 

Trabalho a frio 

S Resistentes ao choque (shock resistant) Trabalho a frio ou a quente 

O Temperáveis em óleo (oil quench) Trabalho a frio 

A Temperáveis ao ar (air quench) Trabalho a frio 

D Alta temperabilidade (deep hardening) Trabalho a frio 

H Aços para trabalho a quente (hot work) Trabalho a quente 

T Aços rápidos ao tungstênio Usinagem 

M Aços rápidos ao molibdênio Usinagem 

P Aços para moldes Moldes para injeção de 
plásticos 

Fonte: Adaptado de Froehlich, 2003 

Pesquisas recentes, como as de Kim et al. (2015) e Tobola et al. (2017), 

destacam a evolução dos aços com 8% de cromo, que podem ser considerados 

versões modificadas do AISI D2. Esses aços apresentam menores teores de 

carbono e cromo, o que reduz a formação de carbonetos primários frágeis, 

conferindo maior tenacidade e melhor desempenho em condições severas de 

operação. 

Estudos microestruturais indicam que o refinamento dos carbonetos M₇C₃ e 

M₂₃C₆ desempenha papel fundamental no aumento da resistência à propagação de 

trincas e na estabilidade dimensional após o tratamento térmico, além de favorecer a 

soldabilidade e os reparos por processos de arco elétrico (Tobola et al., 2017; 

Macek; Hájek; Tobola, 2019). Conforme apresentado na Tabela 2, os aços 

ferramenta com teor de 8% de cromo, como o VF800AT, apresentam uma 

combinação superior de dureza e tenacidade em comparação ao aço AISI D2, 

tradicionalmente utilizado em aplicações de conformação a frio. Dessa forma, esses 

materiais vêm se consolidando como alternativas promissoras para a substituição de 

ligas convencionais, proporcionando maior vida útil, resistência mecânica e 

confiabilidade operacional em ferramentas submetidas a elevadas solicitações 

mecânicas e térmicas.  
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Tabela 2 – Comparação entre aços ferramenta para trabalho a frio 
Aço Composição típica 

(Cr, C, outros) 
Propriedades 
principais 

Limitações 

AISI D2 ~12% Cr, 1,5% C Alta dureza e 
resistência ao 
desgaste 

Baixa tenacidade, 
suscetível a trincas 

Aços 8% Cr ~8% Cr, 0,8-1,2% C, 

Mo, V 

Combinação de dureza 
e tenacidade superior 
ao D2 

Em consolidação 
industrial 

VF800AT C 0,85%; Cr 8,5%; Mo 
2,0%; V 0,5%; Nb 
0,15% 

Alta tenacidade, 
resistência ao 
desgaste, menor risco 
de trinca 

Custo mais elevado 

Fonte: Adaptado de Villares Metals, 2001, 2003; Mesquita; Barbosa, 2005; Kim et al., 2015; Tobola et 
al., 2017 

A compreensão da relação entre composição química, microestrutura e 

propriedades mecânicas é essencial para otimizar tanto o desempenho quanto os 

procedimentos de recuperação por soldagem. O VF800AT, por combinar alta dureza 

com boa tenacidade, apresenta excelente resposta ao processo GMAW, permitindo 

restaurar componentes danificados sem comprometer significativamente suas 

propriedades originais (Böhler, 2008; Tonkovič et al., 2015; Both, 2011). 

Além disso, estudos recentes sobre aços de 8% Cr, como os de Tobola et al. 

(2017) e Macek, Hájek e Tobola (2019), confirmam a tendência de substituição 

progressiva do AISI D2, graças à maior resistência à propagação de trincas, melhor 

tenacidade transversal e microestrutura mais homogênea. A distribuição uniforme 

dos carbonetos M₇C₃ e M₂₃C₆ reduz concentrações de tensões, garantindo 

estabilidade dimensional durante o revenimento e em processos de soldagem, 

fatores que reforçam o potencial do VF800AT como material de alto desempenho 

para ferramentas de conformação a frio e aplicações submetidas a desgaste severo. 

2.2 TRATAMENTOS TÉRMICOS EM AÇOS FERRAMENTA 

O desempenho dos aços-ferramenta está diretamente associado à aplicação 

de tratamentos térmicos adequados, os quais permitem ajustar a microestrutura e, 

consequentemente, as propriedades finais do material. Entre esses tratamentos, 

destacam-se a têmpera e o revenimento, amplamente empregados na indústria 

metalúrgica para equilibrar dureza, resistência ao desgaste e tenacidade (Callister; 

Rethwisch, 2012; Krauss, 1990). 

A têmpera consiste no aquecimento do aço até a temperatura de 

austenitização — geralmente entre 980 e 1100 °C, dependendo da composição — 
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seguido de um resfriamento rápido em meio adequado, como óleo, ar ou polímero. 

Esse processo promove a formação de martensita, uma fase supersaturada de 

carbono responsável pela alta dureza e resistência ao desgaste. Entretanto, essa 

estrutura também apresenta baixa tenacidade, o que torna o material mais propenso 

à formação de trincas e fraturas frágeis (Krauss, 1990; Mesquita; Barbosa, 2005). 

Para reduzir essas tensões e restaurar parte da ductilidade, o aço temperado 

é submetido ao revenimento, um reaquecimento controlado geralmente realizado 

entre 450 °C e 600 °C. Nessa etapa ocorre a precipitação de carbonetos finos (Fe₃C, 

M₇C₃, M₂₃C₆) e a transformação parcial da martensita, melhorando a tenacidade e a 

resistência à fadiga, enquanto se mantêm níveis adequados de dureza (Callister; 

Rethwisch, 2012; Both, 2011). 

Segundo Both (2011), o controle preciso das temperaturas de têmpera e 

revenimento é essencial para garantir microestruturas estáveis e homogêneas, 

especialmente em aços de alta liga como o VF800AT. Um revenimento insuficiente 

mantém tensões residuais que favorecem a nucleação de trincas, enquanto um 

revenimento excessivo pode reduzir a dureza de forma indesejada, comprometendo 

o desempenho em serviço ou em reparos por soldagem. 

Figura 1 – Curva de revenimento do aço VF800 

 

Fonte: Adaptado de Mesquita; Barbosa, 2005; Villares Metals, 2022 

A Figura 1 apresenta a variação da dureza do VF800AT em função da 

temperatura de revenimento. Observa-se que a dureza permanece praticamente 

constante até cerca de 520 °C, com leve aumento atribuído à precipitação 
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secundária de carbonetos finos. Acima dessa faixa, ocorre uma redução significativa 

da dureza, associada à coalescência dos carbonetos e à decomposição parcial da 

martensita revenida (Mesquita; Barbosa, 2005; Villares Metals, 2022). 

Resultados mecânicos apresentados por Villares Metals (2001) também 

demonstram a influência direta do revenimento na resistência mecânica. Conforme 

mostrado na Figura 2, o aço VF800AT revenido a 530 °C apresentou maior tensão 

de ruptura em flexão em comparação ao revenido a 180 °C e ao aço VD2, 

evidenciando sua superioridade em tenacidade e resistência ao revenido. 

Figura 2 – Tensão de ruptura em flexão do aço VF800AT 

 

Fonte: Adaptado de Villares Metals, 2022 

Nos aços para trabalho a frio, como o AISI D2 e o VF800AT, o revenimento 

exerce papel essencial na estabilidade dimensional e na resistência à fadiga sob 

carregamentos cíclicos. O aço VF800AT, em particular, apresenta revenimento 

secundário em temperaturas mais elevadas (acima de 500 °C), o que confere maior 

resistência ao revenido e permite sua aplicação em condições industriais severas 

(Villares Metals, 2001). 

Os efeitos combinados dos tratamentos térmicos de têmpera e revenimento 

podem ser compreendidos por meio dos diagramas TTT (Time–Temperature–

Transformation) e CCT (Continuous–Cooling–Transformation), apresentados na 

Figura 3. O diagrama TTT (Figura 3a) descreve as transformações de fase sob 

condições isotérmicas, evidenciando as regiões de formação de perlita, bainita e 

martensita em função do tempo e da temperatura. Já o diagrama CCT (Figura 3b) 

representa as transformações sob resfriamento contínuo, sendo mais representativo 
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das condições reais de fabricação e tratamento térmico dos aços ferramenta 

(Krauss, 1990). 

Figura 3 – (a) Diagrama TTT. (b) Diagrama CCT 

 

                                             (a)                                                       (b) 

Fonte: Adaptado de Krauss, 1990 

Nos aços ferramenta de alto cromo, como o D2 e o VF800AT, a presença de 

elementos de liga desloca a região de formação de perlita e bainita para tempos 

mais longos, aumentando a temperabilidade. Essa característica permite realizar 

têmperas em seções maiores com menor risco de trincas, resultando em 

propriedades mecânicas mais uniformes (Mesquita; Leiva; Barbosa, 2001). 

Assim, o controle adequado dos ciclos térmicos é fundamental para 

maximizar o desempenho desses aços. A análise dos diagramas TTT e CCT auxilia 

na definição de parâmetros capazes de equilibrar dureza e tenacidade, garantindo 

confiabilidade em serviço e maior vida útil das ferramentas (Callister; Rethwisch, 

2012; Kou, 2003). A microestrutura martensítica revenida do aço VF800AT combina 

resistência ao desgaste, estabilidade dimensional e tenacidade aprimorada, 

características essenciais tanto para o uso prolongado de ferramentas submetidas a 

elevadas solicitações mecânicas quanto para o sucesso de processos de 

recuperação por soldagem GMAW. 

2.3 REPARO DE AÇOS FERRAMENTA PELO PROCESSO GMAW  

A recuperação de aços ferramenta por soldagem tem se mostrado uma 

alternativa eficiente e economicamente vantajosa em relação à substituição 
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completa de componentes danificados. Em ferramentas submetidas a altos esforços 

mecânicos e térmicos — como as utilizadas em processos de conformação a frio — 

é comum o surgimento de trincas, lascamentos e desgaste superficial, que reduzem 

a vida útil e comprometem o desempenho produtivo. O uso de processos de 

soldagem controlados permite restaurar dimensões originais, corrigir defeitos e 

prolongar o tempo de serviço das ferramentas, reduzindo significativamente os 

custos de manutenção (Böhler, 2008; Tonkovič et al., 2015). 

Entre os diferentes processos de recuperação, o Gas Metal Arc Welding 

(GMAW) destaca-se pela alta produtividade, facilidade de automação e boa 

qualidade metalúrgica do depósito. Quando corretamente parametrizado, o GMAW 

possibilita a recuperação de aços de alta liga, como o VF800AT, minimizando 

distorções térmicas e reduzindo o risco de trincas na zona afetada termicamente 

(ZTA). Além disso, a seleção adequada de arames e gases de proteção garante 

uma solda homogênea, com propriedades mecânicas compatíveis com o material de 

base. 

A compreensão dos fundamentos do processo de soldagem GMAW, dos 

modos de transferência metálica e das transformações microestruturais resultantes é 

fundamental para garantir a qualidade e a confiabilidade do reparo. Durante a 

soldagem, ocorrem intensos ciclos térmicos que promovem modificações 

significativas tanto no metal depositado quanto no material base, com destaque para 

a Zona Termicamente Afetada (ZTA). 

Embora essa região não atinja temperaturas de fusão, ela é submetida a 

variações térmicas severas que alteram a microestrutura e as propriedades 

mecânicas do material, influenciadas por parâmetros como energia de soldagem, 

velocidade de avanço e espessura da peça. A Figura 4 ilustra as regiões da ZTA e 

suas respectivas faixas de temperatura de pico, evidenciando as subdivisões em 

ZTA de grão grosseiro (ZTA-GG), grão fino (ZTA-GF), intercrítica (ZTA-IC) e 

subcrítica (ZTA-SC). Cada uma dessas zonas apresenta diferentes graus de 

transformação de fases, responsáveis pela variação de dureza e comportamento 

mecânico ao longo da junta soldada. 
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Figura 4 – Regiões da ZTA e respectivas temperaturas 

 

Fonte: adaptado de Aguiar, 2001 

A ZTA pode ser subdividida em quatro regiões distintas: grãos grossos (ZTA-

GG), grãos finos (ZTA-GF), intercrítica (ZTA-IC) e subcrítica (ZTA-SC). Cada uma 

apresenta microestruturas e propriedades específicas conforme as temperaturas 

atingidas e o tempo de exposição térmica (AWS, 2000; ASM, 1993; Aguiar, 2001). 

Na ZTA-GG, região mais próxima da zona fundida, as temperaturas excedem 

a linha crítica Ac₃, promovendo austenitização completa e dissolução dos 

carbonetos primários. Durante o resfriamento, forma-se martensita de alto carbono, 

com alta dureza, porém baixa tenacidade — o que eleva a susceptibilidade à 

formação de trincas a frio, especialmente quando associada a tensões residuais e 

hidrogênio difusível (Kou, 2003; Modenesi, 2012). 

A ZTA-GF, localizada ligeiramente mais distante da zona fundida, também 

atinge temperaturas acima de Ac₃, porém com menor tempo de exposição. O 

resultado é uma microestrutura mais refinada, composta por martensita revenida e 

carbonetos secundários, que proporciona um equilíbrio adequado entre dureza e 

tenacidade, apresentando maior resistência à propagação de trincas (Mesquita; 

Barbosa, 2005). 

Na ZTA-IC, as temperaturas variam entre as linhas críticas Ac₁ e Ac₃, 

ocasionando austenitização parcial. Nessa condição, coexistem ferrita, martensita e 

carbonetos, originando uma microestrutura heterogênea e instável. O endurecimento 

localizado observado nessa região está relacionado à formação parcial de 

martensita, o que eleva a dureza, mas também a fragilidade local, tornando a ZTA-



22 
 

IC uma das zonas mais críticas para a integridade metalúrgica (AWS, 2000; Both, 

2011). 

Conforme ilustrado na Figura 5, a Zona Termicamente Afetada Subcrítica 

(ZTA-SC) não atinge o limite de transformação Ac₁, impossibilitando a ocorrência de 

austenitização. Nessa região, ocorre apenas um revenimento localizado da 

martensita previamente formada, resultando em redução da dureza e alívio das 

tensões residuais. Esse efeito contribui para o aumento da tenacidade e para a 

transição gradual entre a zona termicamente afetada e o metal base, garantindo 

uma melhor integridade metalúrgica da junta soldada (ASM, 1993). 

Figura 5 – Esquema do perfil de medições de microdureza 

 

Fonte: Adaptado de Böhler, 2008 

Estudos realizados com o aço AISI D2 demonstram comportamento 

semelhante, porém com maior tendência à formação de martensita frágil e trincas na 

ZTA-GG, devido ao elevado teor de carbono e cromo (~12%). Já o aço VF800AT, 

pertencente à classe dos aços de 8% Cr, apresenta microestrutura mais refinada e 

maior tenacidade transversal, reduzindo as concentrações de tensão e melhorando 

a resposta ao revenimento após a soldagem (Tobola et al., 2017; Pellin, 2018). 

Em síntese, o controle do aporte térmico, da temperatura interpasse e da taxa 

de resfriamento é essencial para minimizar o endurecimento excessivo e evitar o 

surgimento de trincas na ZTA. A compreensão detalhada das transformações 

microestruturais que ocorrem durante o processo é, portanto, fundamental para o 

sucesso da recuperação de aços ferramenta pelo processo GMAW, garantindo 

desempenho mecânico e confiabilidade comparáveis ao material original. 
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2.4 DESEMPENHO TRIBOLÓGICO DE FERRAMENTAS DE CONFORMAÇÃO 

RECUPERADAS POR SOLDAGEM 

As ferramentas utilizadas em processos de estampagem a frio são 

submetidas a condições severas de contato e atrito, tornando o desempenho 

tribológico um fator decisivo para sua durabilidade e eficiência (Lange, 1990; Jost, 

1990). Durante a conformação, as superfícies ativas do punção e da matriz entram 

em contato direto com a chapa metálica, sendo expostas a elevadas pressões, 

tensões cíclicas e movimento relativo — condições que favorecem o desgaste 

progressivo e a perda de precisão dimensional. Compreender os mecanismos de 

falha e correlacioná-los às condições de carregamento e vida útil é fundamental para 

estabelecer estratégias eficazes de manutenção. A soldagem de reparo, quando 

corretamente aplicada, representa uma alternativa eficiente para restaurar 

componentes danificados e prolongar o tempo em serviço das ferramentas, 

reduzindo custos e aumentando a confiabilidade do processo produtivo (Böhler, 

2008; Tonkovič et al., 2015).  

O desgaste é um fenômeno tribológico resultante da interação entre 

superfícies sólidas em movimento relativo, podendo provocar a remoção ou 

deformação de material. Entre os principais mecanismos de desgaste que ocorrem 

em ferramentas de conformação e estampagem destacam-se o adesivo, o abrasivo, 

o corrosivo e o por fadiga (Marques, 2019). Cada mecanismo manifesta-se sob 

condições específicas de carga, temperatura, lubrificação e rugosidade superficial, 

podendo inclusive ocorrer de forma simultânea. 

O desgaste abrasivo caracteriza-se pela remoção de partes da superfície da 

matriz devido à ação de partículas duras que se intercalam entre o material e a 

ferramenta (Pellin, 2018). Esse tipo de desgaste ocorre sempre que um corpo sólido 

é pressionado contra partículas de dureza igual ou superior, o que resulta em cortes, 

sulcos e perda de material. Uma das maiores dificuldades no controle desse 

fenômeno é que o termo “desgaste abrasivo” engloba diferentes micromecanismos 

que atuam em conjunto, dificultando sua caracterização precisa. 

Em muitos casos, o desgaste abrasivo ocorre pela ação de dois corpos, 

deixando marcas paralelas à direção do deslizamento; em outros, envolve a ação de 

três corpos, quando partículas soltas atuam como intermediárias entre as superfícies 

em movimento. Esses micromecanismos podem envolver deformação plástica ou 
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fratura frágil, que representa os principais tipos de interação entre partículas e 

superfícies durante o desgaste abrasivo. 

As ferramentas utilizadas em processos de conformação a frio estão 

submetidas a altas solicitações mecânicas e tribológicas, que favorecem o 

surgimento de diversos mecanismos de desgaste e falha. Os principais tipos de 

desgaste observados em ferramentas de estampagem são o adesivo, o abrasivo, o 

de fadiga superficial e o corrosivo. Esses mecanismos podem atuar isoladamente ou 

de forma combinada, provocando remoção progressiva de material, formação de 

microtrincas, oxidação superficial e, em casos mais severos, fratura catastrófica. 

Tais fenômenos comprometem diretamente a eficiência operacional, a precisão 

dimensional e a vida útil das ferramentas (Cordeiro, 2016; Gonçalves, 2016). O 

desgaste tende a se concentrar nas regiões de maior contato e atrito, levando à 

perda progressiva de material e à alteração das dimensões originais da ferramenta. 

Em ferramentas de estampagem, esse fenômeno ocorre principalmente nas arestas 

de corte, reduzindo a precisão dimensional das peças produzidas (Bianco, 2003). A 

Figura 6 apresenta os principais modos de desgaste que ocorrem em ferramentas 

de conformação a frio, incluindo o desgaste adesivo, abrasivo, por fadiga e 

corrosivo. 

Figura 6 – Principais modos de desgaste em ferramentas de estampagem: (a) adesivo, (b) abrasivo, 
(c) fadiga e (d) corrosivo 

 
Fonte: Adaptado de Jost, 1990 e Bernardi, 2011 

Estudos indicam que aproximadamente 52% das falhas em ferramentas de 

estampagem estão relacionadas a trincas e quebras superficiais (Gonçalves, 2016). 

Essas trincas podem se iniciar de forma localizada e, com o acúmulo de ciclos de 

carregamento, evoluir para falhas severas, diminuindo significativamente a vida útil 

do componente. O desempenho das ferramentas de estampagem está diretamente 

relacionado às condições tribológicas existentes na interface ferramenta–chapa, 

onde atuam simultaneamente forças normais e tangenciais sob altas pressões de 

contato. O atrito desempenha papel crucial nesse processo, influenciando o fluxo do 
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material, a força necessária para a conformação e a ocorrência de falhas como 

rugas e trincas superficiais (Gallo, 2012; Pantaleón; Tanaka; Bernardes, 2012).  

A rugosidade da superfície da chapa metálica é outro fator determinante para 

o comportamento tribológico. Superfícies excessivamente rugosas podem aumentar 

o atrito local, gerar pressões de contato elevadas e favorecer a adesão entre o 

material da chapa e o da ferramenta (Lange, 1990). Com o avanço do ciclo de 

conformação, o lubrificante é gradualmente removido da interface, o que leva à 

predominância de contato direto entre as superfícies e intensifica o desgaste. Os 

dois mecanismos mais comuns observados em ferramentas de estampagem são o 

desgaste adesivo e o desgaste abrasivo (ver Figura 7). O primeiro caracteriza-se 

pela transferência localizada de material da chapa para a ferramenta, enquanto o 

segundo envolve o riscamento e remoção mecânica de material devido à ação de 

partículas duras ou asperidades (Fotes; Cláudio, 2007). 

Figura 7 – Exemplos de desgaste adesivo e abrasivo observados em punções de estampagem 

 

Fonte: Adaptado de Pellin, Israel e Dalcin, 2024 

Diferentes mecanismos de desgaste, como o adesivo e o abrasivo, podem 

atuar simultaneamente na interface ferramenta–peça, afetando diretamente a 
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integridade superficial e a durabilidade da ferramenta. A compreensão desses 

fenômenos é essencial para otimizar o desempenho de ferramentas fabricadas ou 

reparadas em aços de alta resistência, como o VF800, cuja microestrutura 

martensítica revenida e a presença de carbonetos finos contribuem para reduzir a 

adesão, minimizar o desgaste e prolongar a vida útil da superfície ativa (Böhler, 

2008; Both, 2011). 

Pesquisas recentes demonstram que ferramentas recuperadas por soldagem 

podem atingir desempenho equivalente ou até superior ao de ferramentas novas, 

desde que respeitados os parâmetros adequados de soldagem e tratamento térmico 

subsequente (Tonkovič et al., 2015; Both, 2011). De acordo com Tobola et al. (2017) 

e Macek, Hájek e Tobola (2019), a combinação de uma microestrutura martensítica 

revenida com carbonetos finamente distribuídos garante elevada resistência à fadiga 

e reduz o risco de falhas prematuras por delaminação na interface soldada. O aço 

VF800, portanto, apresenta excelente equilíbrio entre dureza e tenacidade, sendo 

ideal para ferramentas submetidas a pressões elevadas e esforços cíclicos. Estudos 

de Pellin, Israel e Dalcin (2024) comprovam que o reparo por soldagem GMAW, 

quando realizado sob condições adequadas de pré-aquecimento e revenimento, 

pode preservar — e em alguns casos até aprimorar — o desempenho tribológico do 

metal base.  
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3 METODOLOGIA 

Neste capítulo são apresentados os materiais e os procedimentos 

experimentais empregados no desenvolvimento do presente estudo. Os ensaios 

foram conduzidos com o intuito de avaliar o desempenho tribológico do aço VF800 

após o reparo por meio do processo de soldagem GMAW-CMT. Para tal, corpos de 

prova com dimensões de 20 × 75 × 250 mm foram inicialmente submetidos à 

operação de retífica. Em seguida, as peças foram pré-aquecidas a 450 °C e 

submetidas ao processo de soldagem. Após o reparo, realizaram-se análises 

metalográficas, medições de microdureza e ensaios tribológicos para determinação 

do coeficiente de atrito e da resistência ao desgaste do material soldado. A Figura 8 

apresenta o fluxograma com a sequência planejada das etapas de soldagem e 

caracterização. 

Figura 8 – Fluxograma do planejamento de estudo 

 

Fonte: Autor, 2025 

3.1 METAL BASE E METAL DE ADIÇÃO 

O metal base utilizado neste estudo foi o aço para trabalho a frio VF800, 

fornecido pela empresa Villares Metals. O material passou pelos processos de alívio 

de tensões, têmpera e revenimento, apresentando dureza final de 59 HRC. A 

composição química do aço VF800 é apresentada na Tabela 3. Sua microestrutura é 

caracterizada por uma matriz martensítica contendo carbonetos primários e 
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secundários, Figura 9, conferindo elevada resistência mecânica e ao desgaste 

(Pellin; Israel; Dalcin, 2024). 

Figura 9 – A microestrutura do metal base foi atacada com o reagente de Vilella e revelada sob 
microscópio óptico 

 
Fonte: adaptado de Pellin, Israel e Dalcin, 2024 

Neste estudo, foi avaliado um arame tubular metálico Tube-Alloy 260-G com 

diâmetro de 1,2 mm, que deposita uma liga de aço martensítico. Esse material 

apresenta uma combinação favorável entre dureza, resistência ao desgaste e ao 

impacto, além de excelente aderência ao metal base. A composição química do 

arame Tube-Alloy 260-G é apresentada na Tabela 4. 

Tabela 3 – Composição química do aço VF800 (em % em peso)  

C Si Mn P S Co Cr Mo Ni V W Nb 

0,037 0,96 0,37 0,022 0,001 0,03 5,12 
 

1,3 
 

0,38 0,9 0,05 0,13 
 

Fonte: Autor, 2025 

Tabela 4 – Composição química do arame Tube-Alloy 260-G (em % em peso) 

C Cr Ni Mn Si V Cu 

0,62 5,73 0,03 
 

1,98 0,86 0,04 0,05 

Fonte: Autor, 2025 
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3.2 PROCEDIMENTOS DE PREPARAÇÃO DAS AMOSTRAS E SOLDAGEM 

Inicialmente, as superfícies do aço VF800 foram preparadas por retificação, 

Figura 10, utilizando um rebolo com granulometria 46, a fim de garantir uniformidade 

e remoção de impurezas superficiais. Em seguida, foram realizados os reparos nas 

superfícies retificadas, empregando um robô de soldagem ABB IRB1600, controlado 

por um sistema IRC5M2004, utilizando o processo GMAW-CMT, Figura 15. 

Figura 10 – (a) Retífica usada na preparação das amostras; (b) Amostra do aço VF800 após a 
retificação 

 

                           (a)                                                           (b) 
Fonte: Autor, 2025 

Figura 11 – (a) Robô durante o processo de GMAW-CMT; (b) amostra soldada 

  (a)                                                          (b)  
Fonte: Autor, 2025 
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A fonte de energia utilizada foi uma Fronius TransPlus Synergic 4000 CMT 

MVR, que possibilitou o controle preciso da corrente, tensão e velocidade de 

alimentação do arame durante o processo. Os parâmetros de soldagem empregados 

no reparo do aço VF800 estão apresentados na Tabela 5. As amostras com 

dimensões de 20 × 75 × 250 mm foram reparadas pelo processo GMAW-CMT. 

Durante o processo de soldagem, o aço VF800 foi pré-aquecido a 450 °C devido aos 

resultados de estudos anteriores (Pellin; Israel; Dalcin, 2024) que indicaram melhor 

desempenho nessa temperatura. A temperatura entre passes foi mantida em 450 °C, 

com o controle térmico realizado por meio de um termômetro infravermelho 

Equitherm TR882, com faixa de medição de 18 a 1650 °C. 

Tabela 5 – Parâmetros de soldagem utilizados para o reparo do aço VF800 pelo processo GMAW-
CMT 

Tensão 
(V) 

Corren-
te (A) 

Velocidade 
soldagem 
(mm/s) 

Velocidade 
de 
alimentação 
do arame 
(mm/s) 

Distância 
bico-peça 
(mm) 

Gás de 
proteção 

Vazão 
(L/min) 

Temperatu-
ra pré-
aquecimen-
to (°C) 

17,4 183 10 6 12 17% CO2 + 
83% Ar 

15 450 
 

Fonte: Autor, 2025 

3.3 ANÁLISE METALOGRÁFICA 

As amostras soldadas foram preparadas para análise metalográfica conforme 

a norma ASTM E3-11 (2017) – Standard Guide for Preparation of Metallographic 

Specimens. Inicialmente, os corpos de prova foram seccionados transversalmente à 

região soldada utilizando uma cortadora metalográfica de precisão equipada com 

disco abrasivo refrigerado por líquido, a fim de evitar alterações microestruturais 

causadas por aquecimento excessivo. As superfícies obtidas foram lixadas 

manualmente com lixas de carbeto de silício de granulometria progressiva, variando 

de #220 a #1200, e posteriormente polidas mecanicamente com suspensão de 

alumina de 1 µm, obtendo-se uma superfície espelhada adequada para observação 

microscópica. Para a revelação da microestrutura, foi aplicado ataque químico com 

reagente de Vilella (1 g de ácido pícrico, 5 mL de HCl concentrado e 100 mL de 

etanol), com imersão da amostra por aproximadamente 15 s. Esse reagente é 

indicado para aços-ferramenta, permitindo evidenciar de forma nítida a matriz 

martensítica, a zona afetada pelo calor (ZTA) e os carbonetos presentes na 

microestrutura. A caracterização macroestrutural foi realizada por meio de 
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microscopia óptica, em equipamento Zeiss modelo Stemi 508 mostrado na Figura 

12. As imagens foram adquiridas com diferentes ampliações, de forma a possibilitar 

a análise detalhada da região de solda, ZTA e metal de base. 

Figura 12 – Microscópio óptico usado para fazer a macrografia 

 

Fonte: Autor, 2025 

3.4 ENSAIO DE MICRODUREZA 

Os ensaios de microdureza foram realizados de acordo com a norma ASTM 

E384-17 (2017) – Standard Test Method for Microindentation Hardness of Materials, 

a qual estabelece os procedimentos para medições de dureza por microindentação 

Vickers. As medições foram executadas em um microdurômetro Shimadzu HMV-G 

20DT, Figura 13, utilizando carga de 300 gf (HV0,3) aplicada por 15 s em cada ponto 

de medição. 

As indentações foram dispostas ao longo de um perfil transversal à junta 

soldada, abrangendo o metal de solda, a Zona Afetada pelo Calor (ZTA) e o metal 

de base, de modo a permitir a observação da variação de dureza entre as diferentes 

regiões. O espaçamento entre as indentações foi de 0,1 mm. Foram realizadas no 

mínimo 170 medições, permitindo a construção de perfis médios de dureza 

representativos para a condição de reparo por soldagem. 
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Figura 13 – Microdurômetro Shimadzu usado para medição 

Fonte: Autor, 2025 

3.5 ENSAIO TRIBOLÓGICO 

Após a soldagem foi realizada a retífica das amostras com o objetivo de 

garantir a planicidade e o acabamento da superfície. A peça utilizada para a 

realização dos ensaios foi retirada da região retificada, garantindo que a área 

analisada apresentasse as condições ideais de acabamento e preparação 

superficial. 

Os ensaios tribológicos foram conduzidos em condições controladas de 

laboratório, à temperatura ambiente (25 °C), utilizando um tribômetro TRB³ (Anton 

Paar), conforme ilustrado na Figura 14. O equipamento operou no modo de 

deslizamento linear recíproco, em conformidade com a norma ASTM G133, que 

estabelece os procedimentos para avaliação do desgaste por deslizamento. O 

contracorpo empregado consistiu em uma esfera de alumina (Al₂O₃) com diâmetro 

de 6 mm, posicionada em contato com a superfície das amostras sob cargas 

normais de 10 N, 15 N e 20 N, aplicadas individualmente em ensaios distintos. O 
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movimento de deslizamento foi configurado para ocorrer em um curso linear de 10 

mm, com frequência de 2 Hz, até atingir uma distância total de deslizamento de 

1000 m para cada condição experimental. 

Figura 14 – Ensaios de desgaste no tribômetro 

 

Fonte: Autor, 2025 

Após os ensaios, a morfologia das trilhas de desgaste foi examinada em um 

microscópio óptico Leica (modelo DMRX), Figura 15, possibilitando a avaliação 

qualitativa dos danos superficiais e a identificação dos mecanismos de desgaste 

predominantes. A perda de massa das amostras foi quantificada por meio de uma 

balança analítica Shimadzu AUW220D, conforme ilustrado na Figura 16. Com 

resolução de 0,00001 g (cinco casas decimais), assegurando alta precisão na 

determinação da taxa de desgaste. 

A perda de massa obtida antes e após o ensaio tribológico (𝑚antes - 𝑚após) foi 

utilizada para determinar o volume desgastado (𝑣) das amostras, conforme 

apresentado na Equação 1. Nessa equação, 𝘱 representa a densidade dos materiais 

envolvidos, sendo 7,85 g/cm³ (7850 kg/m³) para o arame Tube-Alloy 260-G (Hobart 

Brothers LLC, 2019) e 7,70 g/cm³ (7700 kg/m³) para o aço VF800 (Villares Metals, 

2001). Esse parâmetro é essencial para o cálculo do volume efetivamente removido 

durante o ensaio, permitindo correlacionar o comportamento tribológico com as 

condições de soldagem e as características microestruturais do revestimento 

aplicado sobre o aço VF800. 

𝑣 =
(𝑚𝑎𝑛𝑡𝑒𝑠 − 𝑚𝑎𝑝ó𝑠) 

𝘱
                                                                                                     (1) 
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Figura 15 – Microscópio óptico para registro das trilhas desgastadas 

 
Fonte: Autor, 2025 

Figura 16 – Balança analítica para medição da perda de massa 

Fonte: Autor, 2025 
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O coeficiente de desgaste dimensional (𝒌) foi determinado conforme 

apresentado na Equação 2, considerando-se o volume de material desgastado (𝑣), a 

carga normal aplicada (N) e a distância de deslizamento (L). Esse parâmetro permite 

avaliar a severidade do desgaste em função das condições de contato tribológico, 

possibilitando a comparação entre o desempenho do aço VF800, da ZTA e do MS. A 

determinação do coeficiente 𝒌 fornece uma medida adimensional da resistência ao 

desgaste, sendo essencial para interpretar os resultados obtidos nos ensaios 

tribológicos e correlacioná-los com as características microestruturais do aço VF800 

após o processo de soldagem. 

𝒌 =
𝒗 

𝑵.𝑳
                                                                                                               (2) 
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4 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS 

Este capítulo apresenta e discute os resultados obtidos nos ensaios 

experimentais realizados com o aço VF800 reparado pelo processo de soldagem 

GMAW-CMT, abrangendo as análises metalográficas, perfis de dureza e análises 

tribológicas. O objetivo é compreender os efeitos do reparo sobre a integridade 

metalúrgica e o comportamento de atrito e desgaste das diferentes regiões avaliadas 

— metal de base (MB), zona termicamente afetada (ZTA) e metal de solda (MS). 

4.1 CARACTERIZAÇÃO METALOGRÁFICA 

A análise macroestrutural da região soldada Figura 17 evidencia um cordão 

de solda contínuo e homogêneo, com boa fusão entre o metal de solda (MS) e o 

metal de base (MB). Não foram identificadas descontinuidades, trincas ou 

porosidades aparentes, o que confirma a eficiência dos parâmetros empregados no 

processo GMAW-CMT, garantindo um reparo uniforme e de alta qualidade. Tais 

resultados corroboram com Becker (2024), que destaca o GMAW-CMT como um 

processo de baixa energia e elevada estabilidade, capaz de produzir depósitos com 

excelente molhabilidade e mínima ocorrência de defeitos típicos, como as trincas a 

frio em aços ferramenta. 

Figura 17 – Macrofotografia do aço VF800 reparado pelo processo GMAW-CMT 

  

Fonte: Autor, 2025 



37 
 

4.2 ANÁLISE DOS PERFIS DE MICRODUREZA 

A Figura 18 apresenta o perfil de microdureza obtido na seção transversal da 

amostra soldada, abrangendo as regiões do metal de solda (MS), zona 

termicamente afetada (ZTA) e metal base (MB). Na região do metal de solda (MS), 

os valores de dureza variam entre 600 e 700 HV₀,₃. A zona termicamente afetada 

(ZTA) apresenta o maior valor de microdureza entre as regiões analisadas, 

ultrapassando 900 HV₀,₃. Essa elevação é consequência da formação de martensita 

não revenida, proveniente do aquecimento intenso seguido de rápido resfriamento, o 

que resulta em uma região mais dura, porém também mais frágil, suscetível à 

nucleação de trincas durante esforços mecânicos (Pellin; Israel; Dalcin, 2024). Por 

fim, o metal base (MB) apresenta os menores valores de dureza, estabilizando-se na 

faixa de 400 a 500 HV₀,₃. 

Figura 18 – Perfil de microdureza Vickers sobre a seção transversal do aço VF800 reparado pelo 
processo GMAW-CMT 

 

Fonte: Autor, 2025 

4.3 AVALIAÇÃO TRIBOLÓGICA 

Os ensaios tribológicos foram realizados para avaliar o comportamento de 

atrito e de desgaste das diferentes regiões da amostra. As Figuras 19(a–c) 

apresentam a evolução representativa do coeficiente de atrito (COF) em função da 
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distância de deslizamento sob diferentes cargas normais (10 N, 15 N e 20 N), para o 

metal base (MB), zona termicamente afetada (ZTA) e metal de solda (MS). 

Observou-se que os valores de COF permaneceram relativamente estáveis 

ao longo dos ensaios, após um curto período de acomodação inicial, Figura 19. Em 

geral, o metal de solda (MS) apresentou os menores coeficientes de atrito em todas 

as cargas testadas, enquanto o metal base (MB) apresentou valores ligeiramente 

mais elevados. A ZTA exibiu comportamento intermediário, refletindo a transição 

microestrutural entre o material base e o metal de solda. A tendência de redução do 

COF com o aumento da carga normal foi observada em todas as regiões, 

comportamento típico de sistemas tribológicos sob deslizamento a seco, no qual o 

aumento da carga promove maior acomodação superficial e estabilização do 

desgaste. 

Figura 19 – Variação do coeficiente de atrito em função da distância de deslizamento: (a) 10 N; (b) 15 
N; (c) 20 N 

 

(a) 
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(b) 

 

(c) 

Fonte: Autor, 2025 
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A Figura 20 apresenta a variação do coeficiente de desgaste (k) em função da 

carga aplicada. Os resultados indicam que o metal de solda (MS) apresentou menor 

coeficiente de desgaste em todas as condições testadas, evidenciando sua maior 

resistência à remoção de material. A ZTA apresentou desempenho intermediário, 

enquanto o metal de base (MB) foi a região mais suscetível ao desgaste, 

principalmente sob cargas mais elevadas. Essa diferença pode ser atribuída à maior 

dureza e presença de microestruturas martensíticas refinadas do metal de solda, 

que conferem maior estabilidade e resistência durante o deslizamento. 

Figura 20 – Variação do coeficiente de desgaste em função da carga aplicada 

 

Fonte: Autor, 2025 

Figura 21 ilustra as morfologias típicas das trilhas de desgaste obtidas após 

os ensaios. Em todas as condições, o desgaste predominante foi do tipo abrasivo, 

caracterizado pela presença de sulcos paralelos à direção de deslizamento e pela 

ausência de trincas ou delaminações significativas. Sob cargas mais elevadas (20 

N), observou-se leve aumento na largura das trilhas e maior densidade de marcas 

abrasivas, indicando intensificação do desgaste, mas sem evidências de transição 

para mecanismos severos. 
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Figura 21 – Morfologia superficial das trilhas desgastadas (meio da trilha) após ensaios de 
deslizamento recíproco: (a) 10 N; (b) 15 N; (c) 20 N. (i) MB, (ii) ZTA, (iii) MS 

 
(a-i) 

 
(a-ii) 

 
(a-iii) 

 
(b-i) 

 
(b-ii) 

 
(b-iii) 

 
(c-i) 

 
(c-ii) 

 
(c-iii) 

*Meio das trilhas 

Fonte: Autor, 2025 

Na Figura 22, observa-se a morfologia superficial das trilhas de desgaste 

após os ensaios tribológicos, evidenciando uma relação direta entre o aumento da 

carga aplicada e a severidade do desgaste. À medida que a carga cresce, ocorre 

uma ampliação da largura das trilhas e maior remoção de material, indicando 

intensificação do processo. As regiões do metal de solda (MS) apresentaram menor 

degradação superficial, com trilhas mais uniformes e contínuas, demonstrando maior 

resistência ao desgaste. Em contrapartida, as regiões da zona termicamente afetada 

(ZTA) e do metal base (MB) mostraram danos mais severos, com sulcos, 

delaminações e indícios de desgaste adesivo. Esse comportamento está de acordo 

com Marques (2019), que destaca que o aumento da carga normal intensifica o 

desgaste abrasivo e favorece a transição para o regime adesivo, devido ao aumento 

da deformação plástica e à formação de microjunções soldadas entre as superfícies 

em contato. 
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Figura 22 – Morfologia superficial das trilhas desgastadas (ponta da trilha) após ensaios de 
deslizamento recíproco: (a) 10 N; (b) 15 N; (c) 20 N. (i) MB, (ii) ZTA, (iii) MS 

 
(a-i) 

 
(a-ii) 

 
(a-iii) 

 
(b-i) 

 
(b-ii) 

 
(b-iii) 

 
(c-i) 

 
(c-ii) 

 
(c-iii) 

*Ponta das trilhas 

Fonte: Autor, 2025 

Esses resultados demonstram que o metal de solda apresentou 

comportamento comparável ou até superior ao do material original, validando a 

viabilidade técnica do reparo. 

4.4 DISCUSSÃO GERAL DOS RESULTADOS 

A análise integrada dos resultados metalográficos, perfis de microdureza e 

resultados tribológicos permite concluir que o reparo do aço VF800 pelo processo 

GMAW-CMT foi bem-sucedido, tanto do ponto de vista microestrutural quanto 

funcional. A continuidade metalúrgica observada entre as regiões soldadas e o 

material base, aliada à ausência de defeitos macroscópicos, confirma a boa 

qualidade do reparo. 

A Figura 23 apresenta os valores médios de microdureza obtidos nas regiões 

do metal de solda (MS), zona termicamente afetada (ZTA) e metal base (MB). 
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Observa-se que a ZTA apresentou a maior dureza média, aproximadamente 870 

HV, seguida pelo MS, com cerca de 650 HV, enquanto o MB apresentou o menor 

valor, em torno de 430 HV. O aumento da dureza na ZTA está associado à formação 

de martensita decorrente do rápido resfriamento após a soldagem. Esse 

comportamento é típico em aços ferramenta, nos quais a elevada taxa de 

resfriamento favorece a transformação de austenita em martensita, elevando a 

dureza local (Pellin; Israel; Dalcin, 2024). Por outro lado, a região do MS apresentou 

dureza intermediária devido à composição do arame Tube-Alloy 260-G. Já o MB 

manteve os menores valores de dureza, pois durante a soldagem, foi submetido a 

um aquecimento moderado que promoveu o retemperamento parcial da martensita 

originalmente presente no material. Como o VF800 já é fornecido temperado de 

fábrica, esse ciclo térmico adicional atua como um revenido extra, aliviando tensões 

e promovendo precipitação de carbonetos finos, resultando em redução da dureza 

(Pellin; Israel; Dalcin, 2024). 

Figura 23 – Dureza média do MS, ZTA e MB 

 

Fonte: Autor, 2025 

A Figura 24 apresenta a variação do coeficiente de atrito e da perda de massa 

em função da carga aplicada. Observa-se que o metal de solda (MS) apresentou os 

menores valores de coeficiente de atrito quase em todas as condições, enquanto o 

metal base (MB) exibiu os maiores, especialmente sob 20 N, evidenciando maior 

resistência ao deslizamento e tendência à adesão superficial. A zona termicamente 
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afetada (ZTA) manteve comportamento intermediário, refletindo sua microestrutura 

de transição. 

Com o aumento da carga, a perda de massa aumentou proporcionalmente em 

todas as regiões, com o MS apresentando melhor desempenho tribológico — menor 

desgaste e menor atrito — resultado atribuído à sua maior tenacidade e ductilidade. 

Já a ZTA, embora apresente dureza elevada, mostrou maior desprendimento de 

material, evidenciando que alta dureza nem sempre implica melhor resistência ao 

desgaste. Assim, os resultados demonstram que o processo de soldagem GMAW-

CMT foi eficaz na recuperação do aço VF800, restabelecendo propriedades 

tribológicas adequadas na região soldada e assegurando desempenho compatível 

ou superior ao do material original. 

Figura 24 – Variação do coeficiente de atrito (a) e da perda de massa (b) em função da carga 
aplicada 

 

(a) 
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(b) 

De modo geral, o conjunto dos resultados demonstra que o processo GMAW-

CMT aplicado ao aço VF800 é tecnicamente viável para a recuperação de 

ferramentas de conformação a frio, preservando a integridade microestrutural e o 

desempenho tribológico do material. O reparo realizado apresentou comportamento 

estável, sem indícios de fragilização ou perda significativa de resistência ao 

desgaste, validando sua aplicação em ambientes industriais. No entanto, 

recomenda-se em trabalhos futuros fazer análises de microscopia eletrônica de 

varredura (MEV) para avaliar os mecanismos de desgaste. 



46 
 

CONCLUSÃO 

Com base nos resultados obtidos, é possível concluir que o processo GMAW-

CMT aplicado ao aço VF800 apresentou desempenho satisfatório, tanto do ponto de 

vista metalúrgico quanto tribológico. 

A análise macroestrutural evidenciou a boa qualidade do reparo, ausência de 

trincas, porosidades e fusão adequada entre o metal base e o metal de solda, 

confirmando a eficácia dos parâmetros empregados no modo Cold Metal Transfer 

(CMT). 

Os perfis de microdureza mostraram variações significativas entre as regiões 

avaliadas. A zona termicamente afetada (ZTA) apresentou o maior pico de dureza, 

superior a 900 HV₀,₃, sendo aproximadamente 100% mais dura que o metal base 

(MB) e cerca de 38% superior ao metal de solda (MS), devido à formação de 

martensita não revenida. O MS, por sua vez, apresentou valores intermediários, 

entre 600 e 700 HV₀,₃, correspondendo a uma dureza cerca de 44% maior que a do 

MB, enquanto o MB exibiu os menores valores, entre 400 e 500 HV₀,₃. 

Nos ensaios tribológicos, o metal de solda demonstrou o melhor desempenho, 

com menores coeficientes de atrito e menores taxas de desgaste em todas as 

condições de carga analisadas. A ZTA apresentou comportamento intermediário, 

enquanto o metal de base mostrou-se mais suscetível à remoção de material, 

especialmente sob cargas elevadas. As análises morfológicas das trilhas de 

desgaste confirmaram a predominância do mecanismo abrasivo, caracterizado por 

sulcos paralelos à direção de deslizamento, sem indícios de delaminações ou 

fraturas superficiais. 

De forma geral, os resultados obtidos demonstram que o processo GMAW-

CMT é tecnicamente viável para o reparo do aço VF800, preservando suas 

propriedades tribológicas e garantindo a confiabilidade do componente reparado. O 

estudo reforça o potencial desse procedimento para a recuperação de ferramentas 

de conformação a frio, representando uma alternativa eficiente e economicamente 

vantajosa em relação à substituição completa das peças danificadas. 

Como sugestões para trabalhos futuros, recomenda-se ampliar a investigação 

sobre o comportamento tribológico do aço VF800 reparado por GMAW-CMT, 

considerando testar outros metais de adição e parâmetros de soldagem, bem como 

avaliar os efeitos de tratamentos térmicos pós-soldagem na homogeneização 
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microestrutural e na estabilidade da dureza. Estudos complementares utilizando 

técnicas de microscopia eletrônica (MEV/EDS) e ensaios em ferramentas de 

forjamento e estampagem são recomendados para simular de forma mais realista as 

condições de operação industrial. 
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